I spend a fair amount of time on the Keith Burgun Games Discord, which is a community built up around Keith Burgun’s game design theory work. He’s interested, I would say, in designing so-called evergreen strategy games in the vein of Go or Chess. That is, games which facilitate long term engagement. He is also interested in single player strategy games.
My sense is that these two goals compete pretty strongly with one another. Without providing a full account, my sense is that evergreen strategy games like Go and Chess are evergreen almost entirely due to the fact that they are multiplayer games. The addition of a human opponent, in my view, radically changes the game design landscape. As such, single player game design is different beast. This might account for why single player strategy games seem to fall short of evergreen character, where they exist at all.
How might we account for these differences? The basic argument is thus: all a multiplayer strategy game must do is provide a large enough state space between the two players that, in the presence of intelligent play, there is enough richness that a conversation and a culture of conversation can arise. I understand multiplayer, competitive strategy games in at least the following way: in such games each player wants to reach a goal while preventing the other player from the same or a similar goal. To do so they must construct and execute a strategy (which encompasses, for our purposes, both a strategy to the goal and a counterstrategy against the other player). The player naturally wishes to conceal their strategy from their competitor, but each move they make necessarily communicates information about their strategy. The vital tension of the game comes from the fact that it forces the competitors into a conversation where each utterance is the locus of two, competing, but necessary, goals: to embody the players strategy and to reveal as little about it as possible.
From this point of view the rules of a multiplayer game can be quite “dumb.” They do not, alone, provide the strategic richness. They only need to give a sufficiently rich vocabulary of moves to facilitate the conversation. One way of seeing this is to consider that the number of possible games of Go is vastly larger than the number of games of Go human players are likely to play. Go furnishes a large state space, much of which is unexplored. The players of Go furnish the constraints which make the game live.
Single player games, even in the era of the computer, which can enforce a large number of rules, struggle to meet the level of richness of multiplayer games exactly for the same reason computers cannot pass the Turing test. A computer alone cannot furnish a culture or a conversation.
(At this point you may raise the point that computers can play Go and Chess. This is true. But they cannot play like a person. In a way, the fact that AlphaGo plays in ways which surprise expert player’s of Go demonstrates my point. Playing AlphaGo is a bit like playing against a space alien who comes from an alternative Go tradition. Interpreting a move that AlphaGo makes is challenging because it isn’t part of the evolved culture of Go. In a sense, its moves are in a different language or dialect.)
Terrence Deacon argues, in Incomplete Nature (a very useful book the fundamental point of which perhaps fails to land) that we can make useful progress understanding phenomena in terms of constraint rather than in terms of construction. For instance, we can nail down what a game of Go is as much by describing what doesn’t occur during a game than what does. Another way to appreciate this point is to recognize that we can play Go with orange and blue glass beads as well as we can play it with shell and slate pieces: the precise material construction of the pieces and the board don’t matter to the game. The question I want to pose from this point of view is: where do operating constraints in a game of Go come from?
I think I’ve made a clear argument by this point that the constraints which define any given game of Go come from the players rather than the rules of Go. The rules of Go merely create a context of constraint which forces the players to interact. By creating a context where each move necessarily (partially) communicates the (hopefully concealed) intent of each player, Go creates a space where someone can be said to have a style of play. Where two players can even be said to have a style. Even a community can be understood as having a style. Play, then, is more like a literary tradition than it is like a fully rational analytical process exactly by virtue of the fact that in the presence of such a large true state space of games, play stays near a much smaller, often intuitively or practically understood, effective state space.
Single player games operate in a similar way. Either the single player or a computer enforces some rules, but the rules themselves imply (typically) a much larger true state space than the state space explored by human players. The difference is, of course, that the player is competing against a much simpler counter-constrainer. In most single player, computer hosted, strategy games the counter-constraining forces are typically a small number of very simple agents pursuing a bunch of distinct goals. If you think of each move of a game as being an utterance in a dialog, as is the case in a two player game, then, in a single player game, the player is doing worse than having a conversation with themselves: they are speaking to no one, though the game engine might be attempting to provide an illusion of conversation. Providing the illusion of culture and conversation is the grand challenge of single player strategy game design.
(Interesting note: from this point of view, games have hardly evolved from the simple (and arguably deeply unsatisfying) text-interpreters of text adventure games.)
Believe it or not, all that was front matter for the following observation which I find myself returning to over and over: Mathematics is perhaps the best example of a single player, evergreen, strategy game-like institution.
Mathematics can plausibly be described as a game. The lusory goal of a mathematical exercise is typically to construct a particular sentence in a formal language using the less than efficient means provided by the rules of that formal system. In other words, you could just write out the sentence, but you don’t let yourself do so. You force yourself, using only the formal rules of your system and your axioms, to find a way to construct the sentence. As in real games, the number of possible rewrites you can make using the formal system is much, much larger than the ones you’re actually interested in. In a real sense, the mathematician is doing the heavy lifting when it comes to the practical character of a formal system. Indeed, the community of mathematicians is doing the lifting. They develop an evolving culture of proof strategy which constrains the typical manipulation of symbols profoundly. In this way, the practice of mathematics is much like the play of multiplayer strategy games. There are probably many, many ways to prove a given theorem, assuming it is provable, but exactly because the space of proof is so large and because humans are so limited in comparison to it, style evolves as a necessity. It helps us prune probably ineffective strategies.
What insights are there here for us, as game designers? It seems to be a maxim, over at the Keith Burgun discord, that we ought not to let the player design the game. Often this comes up in places where players are given agency over goals. We might find that players adopt restrictions on their play to intentionally increase difficulty. Or they might design arbitrary goals like playing without losing any health or restricted to a subset of the board. If we to build an analogy to mathematics, it would be as if we specially designated a class of mathematicians to identify target proofs and then handed them to a distinct set of mathematicians (forbidden to invent their own theorems) to prove them. But it is precisely the freedom of mathematicians to invent their own rules and goals that makes mathematics so much like an evergreen game. To use the language of constraint, mathematicians are able to play against themselves. They build both the rules of the game and then they constrain the space of play by playing. Having the freedom to choose goals and means, they can ensure that play remains stimulating even in the absence of an opponent.
In contrast, players of single player, computer hosted strategy games who are forced to pursue only the goals the designer wants, are hamstrung to grapple with systems which inevitably offer insufficiently rich constraints. Designer’s who forbid themselves from considering player-selected goals (and even player modification of rules) are restricting themselves from considering design questions like “What sort of rule sets facilitate interesting goal choices?” Such limitations make their games as dead as the computers which host them. Not entirely dead, but pretty lifeless.